U.G. 6th Semester Examination - 2021 CHEMISTRY

Course Code: BCEMDSHC6

Course Title: Polymer Chemistry

Full Marks: 30 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **ten** questions:

 $1 \times 10 = 10$

- a) Which of the following molecules will undergo ring opening polymerization (ROP)?
 N-vinyl Caprolactam, ε-Caprolactone, Lactide, Styrene.
- b) Write down the name of two monomers those can be polymerized by living radical as well as living ionic polymerization technique.
- c) Draw the chemical structures of the polyvinyl alcohol and polyisobutylene.
- d) Which polymerization technique is used to make polyisobutylene?

- e) Give two important applications of polyvinyl chloride.
- f) Which of the following polymers are degradable and why?

Polyethylene, polyethylene terephthalate, polystyrene, polyamide.

g) How many glass transition temperature (T_g) would be obtained in each of the following polymer?

6 Random Copolymer DiBlock Copolymer

- h) Mention any one initiator used in each of cationic and anionic polymerization.
- i) Name one polymer which shows upper critical solution temperature (UCST) in water.
- j) Name one gel permeation chromatography (GPC) detector which will help you to obtain weight average molecular weight (M_w) of polymer.

k) Give the IUPAC nomenclature of

$$\bigcap_{n \in \mathbb{N}} \mathbb{N}$$

- What are chain transfer agent? Give an example. 1)
- What do you mean by ceiling temperature of a polymer?
- Calculate the molecular weight of polypropylene whose degree of polymerization is 2500.
- Name any two fluoropolymers and write down their structures.
- Answer any **five** questions: $2 \times 5 = 10$
 - Draw the structures of atactic polystyrene and syndiotactic polystyrene. Which of the above isomer will exhibit melting temperature (T_m)? Justify your answer.
 - In polymerization of styrene, how do you know b) that the polymer is formed or not? If the polymer is formed how do you purify that polymer?
 - Living controlled polymerization of styrene (St) and isobutylene (IB) produced a random

copolymer. Structural analysis of the copolymer by ¹HNMR spectroscopy gives 0.4 weight fraction of IB in the copolymer. Polystyrene has a $T_g=100^{\circ}C$ and polyisobutylene has a $T_g = -70^{\circ}$ C. Estimate the T_g of the random copolymer.

 M_w of St=104.1 g/mol and IB=56.11 g/mol.

- A linear step polymerization is 99% complete. Calculate \overline{X}_n , \overline{X}_w and PDI.
- What are virial coefficients?
- If the value of initial concentration of hydroxyl and carboxyl monomer is 10 molL-1 and rate constant is 10⁻³ L mol⁻¹s⁻¹ for a self-catalyzed polycondensation reaction, how long would it take to obtain \bar{X}_n of 50?
- Why is bakelite a thermosetting plastic?
- Why methyl methacrylate does not polymerize above 200°C?
- Answer any **two** questions: $5 \times 2 = 10$
 - Polystyrene was synthesized with chain a) end functionality as shown below by controlled living radical polymerization method. How can you use chain-end

analysis methods such as UV-vis spectroscopy and ¹HNMR spectroscopy to determine the average degree of polymerization of polystyrene. 3

HO
$$S = C_4H$$

ii) Complete the following:

$$\mathrm{n~H_2N}\big(\mathrm{CH_2}\big)_{\!\!6}~\mathrm{NH_2} + \mathrm{nHO_2C}\big(\mathrm{CH_2}\big)_{\!\!4}~\mathrm{CO_2H} \rightarrow$$

$$H = NH - (CH_2)_6 - NHCO - (CH_2)_4 - CO = OH + ?...H_2O$$

- iii) What is cage effect?
- b) i) For the following reactivity ratio value (r₁ and r₂), what type of polymers would be expected?

$$r_1 = 0$$
 and $r_2 = 0$; $r_1 = r_2 = 1$.

ii) Explain the following fact:

Monomer	Radical	Cationic	Anionic
Styrene (St)	$r_1 = 0.52$	$r_1 = 10$	$r_1 = 0.1$
Methyl methacrylate (MMA)	$r_2 = 0.46$	$r_2 = 0.1$	$r_2 = 6.0$

c) Discuss the various factors which affect glass transition temperature of polymers. 5
