SKBU/UG-III/Chem.-IX(H)/21

2021

CHEMISTRY

[HONOURS]

Paper: IX

Full Marks: 100

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Marks: 50)

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Explain the term trans-effect with specific example.
- b) Which one of the following is diamagnetic and why?

 $K_2[NiF_6]$ and $K_3[CoF_6]$

- c) Comment on magnetic moment of the $\operatorname{Re_2Cl_8^{2-}}$ ion.
- d) Draw the structure of $Fe_2(CO)_9$ and $Ir_4(CO)_{12}$ molecule.
- e) What is CFAE? Why is it calculated?

[Turn over]

- f) Write down 'd' orbital spliting pattern in square planar crystal field.
- g) What happens when chlorine is passed into a suspension of hydrated ferric oxide in hot concentrated KOH solution?
- h) "Cis-Platin" is used in cancer chemotherapy
 Why?
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - with CN^- both Cu^{2+} and Ni^{2+} form square planar tetracyano complex but with NH_3 , Ni^{2+} forms $[Ni(NH_3)_6]^{2+}$ but Cu^{2+} forms $[Cu(NH_3)_4]^{2+}$ explain.
 - complex of Ruthenium. Write the method of its synthesis. 2+3
 - b) i) Arrange the following ligands in the order of increasing Π -acidity with reasoning: CN⁻, CO, NO⁺.
 - ii) "Predict the structures of Fe₃O₄ and Mn₃O₄ using O.S.S.E. 2+3
 - What are the different oxidation states of Ag? Write the preparations; draw the structures and mention the properties of the following: $K[AgF_4]$, $[Ag(pic)_2]$. 1+2+2

- d) i) How will you prepare Zieses salt?

 Discuss the structure and bonding in Zieses salt.
 - ii) Is the compound obey '18e' rule? (1+3)+1
- e) Complete the following reactions: 1×5
 - i) $\left[Mn(CO)_{5} Cl \right] + CO + AlCl_{3} \rightarrow$
 - ii) $RuCl_3 + NH_3 \xrightarrow{Zn}$
 - iii) $ZrO(NO_3)_2 + Na_2HPO_4 \rightarrow$
 - iv) $H_2PtCl_6 \xrightarrow{Zn}$
 - v) $Mn_2(CO)_{10} + Na \rightarrow$
- f) i) Substitution reaction of [Cr(CO)₆] are very slow, consistent with a low spin d⁶-complex. But the isoelectronic complex [V(CO)₅NO] is very reactive—Comment.
 - ii) Discuss the structure and bonding in $[PtCl_3(C_2H_4)]^-$ anion with special reference to $Pt-C_2H_4$ bond. 2+3
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) Outline the preparatory method and draw the structure of the following:
 - i) Wilkinson catalyst
 - ii) Pottasium Ferricyanide

- iii) Sodium nitropruside
- iv) Copper acetate
-) Chrome Alum 2×5
- b) i) Identify (A to E) in the following reaction scheme.

$$Fe(CO)_{5} \xrightarrow{\text{UV}} A \xrightarrow{\text{NO}} B \xrightarrow{I_{2}} C$$

$$E \xleftarrow{\text{CH}_{3}Cl} D \xleftarrow{\text{K}_{2}S}$$

- Discuss the bonding in linear and bent nitrosyl.
- iii) Find the value of 'x' and 'y' assuming validity of the 18e rule in case of the following compounds:

Mn)
$$CO_x^*$$
) NO_y^* and
Fe) $n^5.C_p^*$) CO_x^*) NO_y^*
 $(1+1+1+1+1)+3+(1+1)$

- c) Explain
 - i) $\left[\text{Co(NH}_3)_6\right]^{3+}$ is diamagnetic but $\left[\text{CoF}_6\right]^{3-}$ is strongly paramagnetic.
 - ii) Copper (II) acetate monohydrate shows usually low magnetic moment at room temperature.
 - iii) Electronic spectrum of $[CoF_6]^{3-}$ shows two maxima in the visible region.

- iv) Zn(II) shows a preference for a tetrahedral geometry.
- v) CO has negligible donor properties towards simple acceptors such as BF_3 , but can form strong bonds to transition metal atoms. 2+2+2+2+2
- d) i) How do you extract Ti from its ore? How is it purified? Mention some uses of the metal. $3+1\frac{1}{2}+1\frac{1}{2}=6$
 - What is the number of moles of $KMnO_4$ that will be needed to react with one mole of SO_3^{2-} ion in acidic solution?

iii) What is 'purple of cassius? Give necessary equation of its preparation.

2

GROUP-B

(Marks: 50)

- 4. Answer any **five** questions: $2 \times 5 = 10$
 - a) What is determinate error?
 - b) What is the role of NH_4HF_2 in the estimation of Cu^{2+} in presence of Fe^{3+} ?
 - c) Name a metal indicator and draw its structure.
 - d) What is role of globin chain in hemoglobin oxygenation?

e) Estimate the absolute standard deviation for the result of the following calculation:

$$Y = \frac{1.97(\pm 0.01)}{243(\pm 3)}.$$

- f) Write down the names of redox enzymes in PS-I and PS-II of photosynthesis.
- g) High value of DO means pollution load is high— comment.
- h) What is iodimetry? Give an example.
- 5. Answer any **four** questions: $5 \times 4 = 20$
 - a) i) Briefly explain the functioning and importance of Na⁺ ion pump.
 - ii) Name one Zn-containing enzyme. 4+1
 - b) 50ml of 0.100(M) NaCl solution is titrated with 0.100(M) AgNO₃ solution. Calculate the chloride ion concentration during
 - i) Start of the titration
 - ii) After the addition of 10ml AgNO₃ solution
 - iii) After addition of 49.9ml AgNO₃ solution.
 - iv) Equivalence point.

- v) After addition of 60ml AgNO $_3$ solution. 1+1+1+1+1
- c) i) What is Zimmermann Reinhardt solution? Why is it used during estimation of Fe(II) with KMnO₄?
 - ii) 25 ml of a solution containing Ca²⁺ is titrated with 0.05M EDTA using calcon indicator at pH12. 15ml EDTA is required when the indicator changes colour. Calculate the amount of Ca²⁺ in the solution in gm/L. 3+2
- d) State Beer's law. How do you test the validity of Beer's law? Explain why deviation occurs in some cases. $2+1\frac{1}{2}+1\frac{1}{2}=5$
- e) What is high frequency titration? How does it differ from common conductometric titration? 2.5×2
- f) What is thin layer chromatography? How can you identify some aminoacids in a mixture by TLC?

 5
- g) i) The following results were obtained in the replicate determination of the lead content of a blood sample:

- 0.752, 0.756, 0.752, 0.751, and 0.760 ppm Pb. Calculate the mean and standard deviation of this set of data.
- ii) How is bromide estimated in solution by Volhard's method? 3+2
- 6. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) What is the difference between the structures of hemoglobin and myoglobin? Which one carry oxygen more and why?
 - ii) Explain why calibration curve is necessary for spectrophotometric determination.
 - iii) What is the role of Mg(II) in chlorophyll?
 - iv) What are the important properties which make Zn(II) biologically so important in nonredox metalloenzymes? 3
 - b) i) Give an example of redox indicator and explain its function in a titration. Why should you add $H_2SO_4 H_3PO_4$ mixture during estimation of Fe^{2+} with a standard $K_2Cr_2O_7$ solution? 1+2+2

ii) 50ml 0.1M H₃PO₄ is titrated with 0.1N NaOH solution. Calculate the pH when 50ml, 75ml, 100ml and 150ml NaOH are added.

(K₁ for H₃PO₄ =
$$7 \times 10^{-3}$$
, K₂ = 6×10^{-8} , K₃ = 5×10^{-13})
$$1 + 1 + 1 + 2$$

- c) i) Discuss the structural features of hemoglobin and myoglobin.
 - ii) What do you mean by cooperative interaction in O₂ affinity of hemoglobin?
 - iii) Give an example of a naturally occurring M-C σ bonded species.
 - iv) Write down the name of metal ions present in nature, in which the first one function as an electron transfer agent and the second one catalyses the hydrolysis reaction.

 4+3+1+2
- d) i) The standard reduction potential of Cu^{2+}/Cu^{+} is lower than that of I_2/I^{-} , yet copper is estimated iodometrically—How this becomes possible?
 - ii) "Starch should be added towards the end point" why?

- iii) H₃PO₄ can not be directly titrated as a tribasic acid but can be directly so titrated in presence of CaCl₂" Why?
- iv) Mention the requisite characteristic of a redex indicator. 3+2+3+2