U.G. 6th Semester Examination - 2021 MATHEMATICS

Course Code: BMTMDSHT6

Course Title: Point Set Topology

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) State Axiom of choice.
 - b) What do you mean by well ordered set?
 - c) Define the indiscrete topology on a set X.
 - d) Determine the accumulation points of the set $(a, b] \subseteq \mathbb{R}$.
 - e) Let X be a discrete topological space. Determine the closure of any subset A of X.
 - f) Find the closed sets for the topological space (X, τ) where $X=\{a, b\}, \tau=\{\phi, \{a\}, X\}$.
 - g) The open discs form a base for the usual topology on the plane \mathbb{R}^2 . Is it true?

[Turn Over]

- h) Consider the topology on $X = \{a, b, c, d, e\}$ as topology
- $\tau = \left\{\phi, \ X, \left\{a\right\}, \left\{a, \ b\right\}, \left\{a, \ c, \ d\right\}, \left\{a, \ b, \ c, \ d\right\}, \left\{a, \ b, \ c\right\}\right\}.$ List the neighbourhoods of the point e.
 - i) Let the real function $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Show that f is not open.
 - j) Totally bounded sets are bounded. Is it true?
 - k) $\mathbb{R}^2 \setminus \{(0, 0)\}$ is a disconnected set. Is it true?
 - State true or false of the following statement"IR is a compact set".
 - m) Let $f: A \to \mathbb{R}$, $(A \subseteq \mathbb{R})$ be a continuous function and A is a connected subset of \mathbb{R} . State whether the image f(A) is connected or not.
 - n) $[a, \infty)$ is a compact subset of \mathbb{R} . Is it true?
 - o) Define a perfect set.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Determine whether d(x, y) = |x 2y|, $x, y \in \mathbb{R}$ is a metric on \mathbb{R} .
 - b) Determine interior and closure of Q in R with usual metric.
 - c) Find the limit points of any subset A of a discrete metric space.

- d) Find the closed subsets for the topology τ on $X = \{a, b, c, d, e\}$ where $\tau = \{\phi, X, \{a\}, \{c, d\}, \{b, c, d, e\}, \{a, c, d\}\}.$
- e) Let τ be the class consisting of \mathbb{R} , ϕ and all infinite open intervals $A_q = (q, \infty)$ with $q \in Q$, the rationals. Show that τ is not a topology on \mathbb{R} .
- f) List all topologies on $X=\{a, b, c\}$ which consist of exactly four members.
- g) Show that \mathbb{R} is homeomorphic to (0, 1) w.r. to usual topology.
- h) Prove or disprove: R with co-finite topology is Hausdorff.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Prove that the unit interval [0, 1] is non-denumerable.
 - b) Let f: X → Y be a function from a non-empty set X into a topological space (Y, μ).
 Furthermore, let τ be the class of inverses of open subsets of Y:

$$\tau = \left\{ f^{-1} \left[G \right] : G \in \mu \right\}.$$

Show that τ is a topology on X.

- e) Prove that continuous images of a compact set is compact.
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Let A be a subset of the topological space X. Let A' be the set of limit points of A. Then prove that $\overline{A} = A \cup A'$.
 - ii) Show that a subspace of a Hausdorff space is Hausdorff. 5+5
 - b) i) Let $X=\{a, b, c, d, e\}$ and let $\mathcal{A}=\{\{a, b, c\}, \{c, d\}, \{d, e\}\}\}$. Find the topology on X generated by \mathcal{A} .
 - ii) Show that all intervals (a, 1] and [0, b) where 0<a, b<1 form a subbase for the relative usual topology on the unit interval I=[0, 1].
 - iii) Show that every discrete space X is locally connected.
 - c) i) Let f: X → R be a real continuous function defined on a connected set X.
 Then f assumes as a value each number between any two of its values.
 - ii) Prove that every complete metric spaceX is of second category.6
